The 45th APIMONDIA congress will be held from September 29th to October 4th, 2017, in Istanbul / Turkey.

VENUE
The venue for the Congress is “Istanbul Congress Center” in the heart of the city, in the area named Congress Valley in Taksim-Nişantaşı district, which is the most elegant and central destination in Istanbul. There are various cafes, restaurants, shopping facilities around. Building is close to most of the commercial and cultural spots of the city, furthermore there are many hotel alternatives within the walking distance. You may find further details about the Congress Center on www.iccistanbul.com

Istanbul Congress Center was built by Istanbul Metropolitan Municipality in September 2009. It is a seven floor facility with a 119,500 sqm area. Located on the 6th and the 7th floors, there is a parking lot with a capacity of 850 vehicles.

Location of the Congress Valley is allowing the participants easy access to municipal, domestic and international transportation networks. There are dozens of three, four and five-star hotels for a combined total of over 12,000 rooms within walking distance to Congress center

ApiEXPO
An exhibition area plan is available on the web page and applications are going on. More than 1,500 sqm area are reserved at the moment.

For contact information and registration details read more on page 5
MESSAGE FROM THE EDITORS

Dear Readers

Welcome to **API NEWS 4.2**!

Business with beekeeping: production, income, employment – possibly for unemployed youths. The EAB tries to support these ideas through actually providing training, backstopping, access to finance and more, mainly by co-implementing ASPIRE (we presented the programme in API NEWS 3.1 about a year ago). We have now ventured into business training for female graduate beekeepers (read more on pages 2 and 4); we are pleased to present a case on a producer—processor linkage for self—employment on page 5. The risks of uncontrolled honey marketing and the need for a better regulation are explained on page 4. However, our lead story is on **APIMONDIA**, and the forthcoming congress of this World Federation of Beekeepers Associations, to be held in Istanbul / Turkey later this year. Ethiopia has regularly participated in those conferences and in the symposia which are held in between the conferences, the last one being in Rome in 2016. We benefited through contacts, new networks and by gaining recognition.

Ethiopia will apply for hosting the 2018 **APIMONDIA** symposium here in Addis Ababa, and suggests to make "Pollination for Food Production & Environmental Rehabilitation" the topic of the event. We started the international networking and were encouraged to make a strong point on the impact of pollinator services in agriculture. Some articles in this issue highlight the importance of insect pollination for food production.

The Editorial committee wishes you interesting reading and again encourages you to share your contributions through the API NEWS.

With regards,

Dr. Juergen Greiling
For the Editorial Board

SECTOR NEWS

BUS: BUSINESSE TRAINING FOR FEMALE GRADUATE BEEKEEPERS

By Dr. Juergen Greiling
(juergen.greiling@cimonline.de)

The Ethiopian Apiculture Board implements the "Ethio German Female Graduate Beekeeper Foster Ship Project" which is supported financially and with expert knowledge by German (foster) beekeepers and donors. The EAB has coordinated and assisted in - the formation of producer groups and the establishment of modern apriaries which serve as a means for income generation and training and innovation transfer in the Ethiopian apiculture sector.

The members of the producer groups as well as the individual beekeepers need business training. The EAB implements this training by Ethiopian BUS trainers who were trained by the professional German trainers from Andreas Hermes Akademie, (AHA) Bonn. The Ethiopian BUS trainers (responsible is W/r Tigit Gebretsai) will provide beekeeper (farmer) entrepreneurship training to strengthen both the organized (producer groups) and individually operating female beekeepers.

What is BUS? It is an abbreviation, a German term which is:

- **Bauern** = Farmer (Beekeeper)
- **Unternehmer** = Entrepreneur
- **Schulung** = Training

The concept of the training is providing three pillars of BUS which is BUS 1 and BUS 2 focuses on my own capacity, my enterprise, my market and my way forward and BUS 3 focus on business plan preparation. The **training** will be done in a modular way, in Addis Ababa, over three consecutive weekends (2 x 2 days; 1 x 3 days). BUS training courses are characterized by various participative methods: introduction of tools with discussion; participants work on their own; presentation of results in small groups with feedback given by other participants; presentation of examples in the whole group followed by discussions.

Continue Reading on Page 4
Albert Einstein is always being quoted for his saying, “If the bees disappear, man would have no more than four years to live”. Evidences shows us that bees are vital for a resilient, stable, healthy environment. They have significant contributions for the attainment of inclusive and sustainable development. Honey bees perform about 80 percent of all pollination worldwide. A single bee colony can pollinate 300 million flowers each day. 70 out of the top 100 human food crops — which supply about 90 percent of the world’s nutrition are pollinated by bees (1). Thus, lack of bees for pollination can mean a loss for the farmer of about 75% of the crop (2). Bees are a key component of global biodiversity, providing vital ecosystem services to crops and wild plants.

Bees are notable for biodiversity conservation and sustainable improvement of natural resources. They are important for the environment, as they provide pollination to both cultivated and natural plants. The health of natural ecosystem is fundamentally linked to the health of our pollinators. The fruits and seeds which result from bees pollination are important sources of food for many mammals, birds, reptiles and insects(3). At least three quarters of the world’s crops benefit from bee pollination. It is estimated that about one third of plants and/or plant products eaten by humans are directly or indirectly dependent on bee pollination (2). These crops produce bigger and higher quality yields when healthy bee colonies are present. Many pollinator dependent crops are packed with vitamins and minerals which are essential for healthy human diets (3). The livelihoods of many millions of people are closely linked to pollinators. Pollinator dependent crops contribute to the income of farmers and there are also benefits to agri-food businesses using pollinator products as well as to the shops and markets which sell them. Beekeeping is an important source of income in many areas around the world, where honey is consumed locally and also traded and exported including as an ingredient in other food products, cosmetics and medicines. Pollinators also provide many benefits beyond food production. For instance, some biofuels, medicines, textiles (e.g. cotton) and construction materials come from animal pollinated plants. Pollinators are also important in arts, crafts, literature and music, and can inspire technology (3).

There is bees wax used for candles. People enjoy the tree and flower-filled landscapes of their countryside, of their gardens and parks; all of which depend on bees and other animal pollinators to maintain their diversity and their ability to keep flowering and growing. When honey bees start to disappear, we may start losing all the plants that bees pollinate, all of the animals that eat those plants and so on. The point is, if the bees continue to decline, then:-

- The majority of fruits and vegetables would go away. That includes apples, blueberries, avocados, broccoli, most leafy greens, pumpkins, and many more.
- If the farmer does not provide fields with honeybees or other bees for pollination, the whole harvest can fail.
- The cosmetic industry, which uses honey as a skin moisturizer in many creams, soaps, shampoo, and lipsticks, will also suffer.
- Oilseeds like cotton, sunflower, coconut, groundnut, and oil palm, which either depend on or benefit from bees pollination would also weaken, eliminating more than half of the world’s diet of fat and oil.
- Beekeepers who make their living by managing bee colonies will go out of business.
- If cows don’t get the proper nutrients, they can’t produce milk.
- If there’s no enough cow’s milk, there will be less dairy products like cheese, yogurt, and ice cream. These products will also be more expensive.

(1) http://www.greenpeace.org/usa/sustainable-agriculture/save-the-bees/
(3) Bees and Pollinators: A Commonwealth Concern report to the Commonwealth Heads of Government and Civil Society Chogm Malta 2015

* The writer acknowledges the works and ideas of all authors including those cited here

Impact of Pollinator Services in Agriculture
By Dr. Manfred J. Kern, AgriExcellence GmbH

ABSTRACT
Improvements in future agriculture are key requisites to safeguard food and nutrition security in 2025 and 2050. Global crop production has to be doubled between 1995 and 2025 triggered by population increase, modified eating habits, increased calorie and meat as well as vegetable consumption. Between 2015 and 2050, more than a doubling of food / crop / fruits / vegetable / stimulants / nuts production is necessary in order to feed 9.3 billion people living on earth. Key factors, which have to be considered are: loss of arable land caused by urbanization, industrialization, desertification; water shortages; shrinking resources; climate change; species extinction; economic disparities; political instabilities; migration; global trade; new cutting edge technologies in agriculture; digital information systems. Besides that, pollination is a key process providing food/nutrition security and wider ecosystem stability. Agricultural crop production is mainly based on self-pollination (e.g. wheat, corn, rice,) and 35 percent of polination by insects, birds and bats (e.g. fruits, vegetables, nuts, beans, stimulants). Calculations and forecasts based on around 600 actual lead papers and books from different fields were made in order to assess the demand and value of pollination services in global agriculture by 2050. The value of pollination done by insects such as bees, bumblebees, hover-flies, butterflies, beetles is calculated to $US 150 – 250 billion per year by several authors. This is close to 10 percent of global value of agricultural production. The necessity to intensify agricultural production implicates an intensification of pollination (commercial pollination/wild pollinators) by factor 3 until 2050. A “Pollinator Vision 2025/2050” reflecting the increased demand of crops being pollinated will be given in order to demonstrate, what is needed to feed global population. Essential management tools will be shown to safeguard pollination in agriculture, to protect ecosystem services, threatened species, biodiversity as well as the environment.

The views expressed in the articles are those of the authors and not necessarily those of the EAB
The effect of honeybee pollination (Apis mellifera L.) on seed production of Allium cepa in the Ethiopian Rift valley
By Admassu Adi, et al
(admassuaddi@gmail.com)

Abstract
The effect of honeybee pollination on seed yield of Allium cepa (onion), Adama Red variety was studied at Melkasa Agricultural Research Centre for the period of 2000-2002 to see the role of honeybee pollination in increasing seed yield of the crop. A. cepa was sown following necessary agronomic recommendation with three types of treatments replicated three times on plot size of 9 m². The seed yield was found to be statistically different in all treatments (P<0.05). The yield obtained from the plots caged with honeybee pollination was highest with mean yield of 17.5 qt/ha followed by plots left open under natural condition to be pollinated by all visiting insects with mean yield of 10 qt/ha. The lowest mean yield of 5 qt/ha was recorded from the plots excluded from honeybees and other pollinators. With regard to 1000 seed weight, there was no significant difference in all treatments. On farm demonstration of this technology with seed producers of A. cepa is highly recommended and honeybee pollination should consider as one of the inputs for onion seed production.

After the training course, participants meet and assist each other with implementation. BUS 1 was trained on the weekend March 11 and 12, at the Gudina Tumsa Multi Purpose Training Centre, Mekanisa, Addis Ababa. About 22 female graduate beekeepers, from groups but also as individuals, from Tigray, Amhara, Addis Ababa, Oromia and SNPR participated.

Uncontrolled Honey Marketing in Addis Ababa
By Elias Zewdie, EHBPEA, (Eliaszewdie1@gmail.com)

According to the data from MoLF, Ethiopia produces 55,000 tonnes of honey annually of which only 5% reaches Addis Ababa. Due to various reasons, lack of trust in the quality of honey being sold at Addis shops is increasing widely. There is assumption that the honey provided to the local market is not of standard quality.

The Ethiopian Honey & Beeswax Producers & Exporters Association has identified the gaps between the honey retailers and the sector’s Standard Guidelines for honey marketing. The standard guidelines require the honey retailers to fulfill certain criteria. Which include:
- All packed food items must be labelled in Amharic & English clearly
- All packed food items must be packed in food-grade materials
- Labeling must state packaging date
- All employees handling food items must wear appropriate overalls

However, some of honey retailers shops in Addis Ababa didn’t meet the required Standard Guidelines. There is one who has received certificate of quality from the Saudi Arabian police hospital which we found it as odd and even totally does not fulfill the standard.

The pictures above were taken during the random survey of honey retailers shops in Addis Ababa by the EHBPEA staff.

Taking note of the various unsatisfactory aspects of domestic honey market, a proclamation aiming at developing a marketing legal framework for honey and other bee products and a regulation for its implementation have been drafted and presented to the parliament. This will assure the quality of honey including traceability both on domestic and export markets.

The views expressed in the articles are those of the authors and not necessarily those of the EAB
Kidane Mamo is a beekeeper in Kundi village of Alle district, Ilu Aba Borra zone. Currently, his family’s economic source is beekeeping on his small piece of land. He has five family members. Before joining agriculture he was working as a driver in a government office. Due to small salary and lack of capacity to cover his economic need, he decided to stop and join agriculture. He asked his family to give him land for cropping and to plant some coffee. Since his family has many children they didn’t have land to give for him. However, he convinced his family and got small land which is not enough for cropping. He constructed a house and planted some eucalyptus trees and coffee for selling. The income he earned from this was small and discouraging. The turning point came when he started beekeeping as a side line business through putting traditional beehives in the forest. He was able to sell some honey and earn income. He continued in traditional beekeeping for some years and then shifted to transitional and modern beekeeping.

In 2014, Kidane was among the selected beekeepers as out-grower of APIS Agribusiness PLC to participate in the ASPIRE project. He attended the training organized by APIS Agribusiness PLC and was selected as a model beekeeper to support other beekeepers in his village. During the training, practical transitional beehive construction was part of the programme and he considered this as an opportunity since the modern beehive is expensive. After the training he constructed 12 transitional beehives and transferred bee colonies. He observed that transitional beekeeping is by far better than traditional beekeeping in a sense it is easy to apply different colony management practices and to harvest quality honey. Through the ASPIRE intervention, he received protective clothing (glove and veil) which facilitated the hive management during colony inspection and follow up. After tasting the benefits of transitional beekeeping, he was selected by APIS Agribusiness PLC as a mentor to coach other beekeepers in his village. As a result, he managed to coach 20 beekeepers and they followed what he is doing at his apiary site.

In addition to the training, the demonstration site established near his house by APIS Agribusiness PLC supported him to apply what he learned during the training.

Today he feels as he is self-employed in his own business. Now his plan is to expand his apiaries to manage 50 beehives in the coming year. He does not have any market problem as long as he produces quality honey because he entered a contract with APIS Agribusiness PLC. He has a vision to become a commercial model beekeeper in his village and plan to supply one ton of honey per year. Since there is a shortage of land, he plans to rent a land to establish apiary site.

As a strategy, APIS Agribusiness PLC is working on creating thousands of beekeepers like Kidane in order to have a sustainable supply chain of an organic bee product. In order to have a traceable, strong and secure organic supply chain, it is vital to maximize the benefit of the beekeepers from honey production through converting them to commercial or semi commercial systems rather than having them operate at a subsistence production level.

APIMONDIA ... (from Page 1)
Assessment of technical capacity status following training and technical support offered to hillside beekeeper cooperatives in selected SLMP watersheds in Central Zone of Tigray

By: Kidane Berhe, et al (kidane.berhe@giz.de)

Introduction
Tigray region has immense potential for beekeeping development, such as suitable agro ecology, diversified indigenous honey bee flora, vast protected hillsides appropriate for beekeeping and huge potential available bee colonies. Beekeeping has been playing a significant role for livelihood improvement of the rural households, as source of employment and income in the region. Considering the available potentials, beekeeping could be a stepping stone and source of affluent life for those who are engaged in it including landless youngsters in the region, if properly implemented. Thus, to make landless youngsters engage in improved hillside beekeeping and exploit the potential, due emphasis has been given in Sustainable Land Management Program (SLMP) watersheds and different interventions have been implemented. Capacity development and technical advice was proposed as an important support tool and has accordingly been given to beekeepers. However, despite support and capacity development provision to hillside beekeepers, their technical capacity to manage their colony throughout the year and conducting queen rearing using splitting was not systematically assessed. Therefore, an assessment was conducted aiming at the following objectives.

Objectives
The objectives of the assessment were:
- To assess the current technical capacity of hillside beekeepers on colony management and queen rearing
- To investigate the ratio of trained female beekeepers
- To generate information on the technical capability of female beekeepers in managing colonies
- To find out the number of expert days spent to support the beekeepers

2. Data collection
Qualitative and quantitative data were collected through focus group discussion with members of the hillside beekeeper cooperatives, Tabias and Woredas respective bodies as well as model individual beekeepers. In addition, secondary data were collected from Woredas and cooperatives. Detailed tasks carried out during data collection are indicated below.

3. Findings of the assessment
3.1. Trainings offered to beekeepers
Offering training had been one of the interventions proposed to fill skill and knowledge gaps of hillside beekeepers. The approach was a ToT approach: Woreda experts were trained in the first place (training of trainers on improved beekeeping development). Thereafter, experts have cascaded the training to bee technicians, livestock development agents and beekeepers. Thus, assessment was conducted on the status of provision of trainings and technical support on beekeeping development. Number of sessions, training days per session and training participants per session disaggregated by sex were assessed. Results revealed that on average 7 training sessions with 3 training days per session and 7 trainees per session and per cooperatives were given. Details of trainings offered are presented in the table below.

Table 1: Number of training sessions, number of training days and average number of training participants from each cooperative in each training session.

<table>
<thead>
<tr>
<th>No.</th>
<th>NC</th>
<th>Woreda</th>
<th>NTS</th>
<th>ATDS</th>
<th>AT/S</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Frewoini</td>
<td>K/tembein</td>
<td>8</td>
<td>3</td>
<td>12</td>
</tr>
<tr>
<td>2</td>
<td>Abay</td>
<td>K/Tembei-en</td>
<td>6</td>
<td>2</td>
<td>8</td>
</tr>
<tr>
<td>3</td>
<td>Millenni-um</td>
<td>Wleke</td>
<td>7</td>
<td>4.3</td>
<td>9</td>
</tr>
<tr>
<td>4</td>
<td>Semhal</td>
<td>Wleke</td>
<td>4</td>
<td>3.3</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>Segen</td>
<td>T/machew</td>
<td>6</td>
<td>1.8</td>
<td>9</td>
</tr>
<tr>
<td>6</td>
<td>Timnit</td>
<td>T/machew</td>
<td>9</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

Mean: 7 3 7

N.B. NC: Name of Cooperatives, NTS: number of training sessions. ATDS: average number of training days per session. AT/S: average number of trainees per session.

The number of training sessions, training days and trainees per session vary from cooperative to cooperative. Timnit and Semhal hillside cooperatives had been trained in 9 and 4 sessions respectively which represent the highest and lowest number of training sessions. The number of trainees per session also varies from cooperative to cooperative. Cooperative members of Frewoini and Timnit hillside beekeeper cooperatives had trained 12 and 2 members per session respectively which is the highest and lowest of all cooperatives. Regarding the number of average training days, on average Millennium cooperative members have been given 4.3 days per session, which is the highest of all cooperatives. Abay, Segen and Timnit have been given 2 training days per sessions which is the least of all. The assessment result indicated that all cooperative members had been trained repeatedly and the training has contributed in solving the identified skill and knowledge gaps.

Criteria to identify training participants was based on invitations of Woredas and there was no conflict caused by trainee selection in the majority of the cooperatives.

However, cooperative members of Segen have complained of lack of transparency in selecting training participants in their cooperative. The Executive Committee of the cooperative always participates and there is no tangible evidence such as documented invitation letters that indicate that it is exclusively the Executive Committee – and not other members – that should participate in the training.

Concerning participation of members in training disaggregated by sex, on average 79% male and 21% female members of the cooperatives have been trained. The proportion of female trained members out of total trained members is very low as compared to 37% available female members in the cooperatives. Only Segen hillside cooperative has given better training opportunities to female members (38%). The proportion of female members in Segen cooperative is 35% of the total. The majority of cooperatives has a low proportion of female trainees but Millennium is the least of all, where female members constituted only 12% of the trainees, but comprise 47% of the members. The reason for a limited participation of female members in trainings is not only that the Executive Committees of cooperatives are dominated by males, but also because focus was not given to capacitate female members in most of the cooperatives.

* This is a joint publication of Kidane Berhe, Ametemariam Gebremichael and Haftay Abraha

Continue reading on page 07..
Lead beekeepers: successful in extension dissemination
By Hailesilase Desta, EAB
(messihailebase@gmail.com)

Ato Tsegahun Gebremedhin, aged 50, is a target beneficiary of ASPIRE and currently a lead beekeeper living in Debrenazereth Kebele of Degua Temben South Eastern Zone of Tigray Regional State. Ato Tsegahun started beekeeping in 2003 by changing one traditional hive to a framed hive. He was nominated as ASPIRE project target beneficiary in 2014 with 5 framed and 5 traditional hives and received basic beekeeping training as per the ASPIRE minimum package.

In 2016 Ato Tsegahun was nominated as one out of 22 Lead Beekeepers from 8 ASPIRE project woredas of Tigray regional state for Lead Beekeepers skill and business plan training in Bahir Dar. ASPIRE and other partners’ basic beekeeping technical capacity building plus technical support of the local government inspired him to increase the number of bee colonies from 10 before the introduction and intervention of ASPIRE to 68 of 2015 and 85 colony 2017(82 framed, 2 transitional and 1 traditional hives) to date. The 85 bee colonies are distributed at four sites with 40, 30, 10 and 5 bee colonies each. Last year, he sold 1268 kg of honey with 270 birr per kg and earned 342,360 birr from the sale of honey and 144,000 birr from the sale of 90 colony selling price 1600 birr per colony.

Ato Tsegahun used the success in his own business to support other small holder beekeepers and copy farmers. Likewise, he is supporting landless youth beekeeping groups as shown in the picture above (colony transfer).

As the result, Ato Tsegahun accepted patronage of 480 small holder and copy farmers with 1801 bee colonies and provided technical support and follow up in four villages of Debrenazereth community.

Read the full success story in the next API NEWS!

Feasibilities of beekeeping in hillside rehabilitation areas for rural entrepreneurship and climate change adaptation in Tigray region, Ethiopia
By Teweldemedhn Gebretinsae, Aksum University (tmedhin.glisae@aku.edu.et)

Abstract
A “Mountain Sharing Programme” has been implemented since the past decade in the region for employing youth. Cooperative beekeepers of 10 members who usually manage bee colonies of 15 to 20 and rarely exceed 40 colonies commonly exist throughout Tigray. This paper tries to analyze the feasibility and profitability of a hypothetical beekeeping cooperative having 40 colonies established in one of the hillside closure areas of Tigray aiming at honey production. Following literature review on production, productivity and other existing situations, economic analyses were conducted. An investment of 139,470 ETB is estimated to start the business. The cost of honey production per kilogram is 67.46 ETB while the sales price at 50% profit margin is 101.19 ETB, which gives annual profit of 21,924 ETB. The breakeven is 50%, which means 328 kg of honey per year can be harvested as contrasted to 650 kg/year average capacity at 65% efficiency. Both NPV (+248,281) and IRR (1.09) suggest beekeeping in hillside closure area is economically viable, can be means of rural employment and complement environmental rehabilitation programs to boost agricultural productivity. However, members of beekeeping cooperatives should be kept proportional with the economic return and activities required to be accomplished. Beekeeping activities in this case can be managed by 2 persons whereas the annual profit is too little to support the livelihood of 10 full time beekeepers. Therefore, most beekeepers seem to be idle, which can lead them to abandon themselves in search of alternatives or tempt to abuse the land. Sideline activities such as horticulture and agro-forestry can augment incomes of the beekeepers besides to enriching apiaries and boosting honey production and environmental rehabilitation. Honeybee’s pollination service enhances ecosystem conservation and agricultural productivity. Annual economic value of honeybee pollination on selected crops in Ethiopia is estimated at 23 billion ETB.

Keywords: youth cooperatives, beekeeping, honey, closure area, environmental rehabilitation, climate change

Assessment of Trainings Continued from page 6.....

3.2. Advice and technical support offered to beekeepers

Technical capacity is among the determinant factors to properly undertake hillside beekeeping as cooperative effectively and efficiently. This can be partly achieved through support by experts, bee technicians and development agents.

One of the emphases given during the assessment was to determine how many days hillside beekeepers in the first year of establishment and on average in the last two years (2007 and 2008 E. C.) were supported by beekeeping development experts, bee technicians and livestock development agents of each Woreda. Support could be advice and technical support regarding beekeeping development by arranging programs; be it to all members or some of them.

3.2.1. Total three years advice and support offered to each cooperative

The assessment result revealed that all cooperatives have been given support but also that the number of days were quite different. In the first year of establishment and in last two years (which is in three years) Frewoini, Abay, Millennium, Sembhal, Timnit and Segen hillside beekeeper cooperatives have been supported by Woreda beekeeping experts for 73, 179, 125, 114, 25 and 102 days respectively. Although there are differences in the number of days from Woreda to Woreda, generally beekeeping development experts, bee technicians and development agents have spent several days to advise and assist beekeepers on technical matters of beekeeping development.

Report Continues in the next API NEWS

**
**

The views expressed in the articles are those of the authors and not necessarily those of the EAB
COMEL Pvt. Ltd. Co

Company Profile

Company Address
Industrial Zone, Aider Sub-City, Kebelle 03, P.O.Box 0038, Mekelle, Ethiopia
Tel: +251-34-4405888 / 4406061, Fax: +251-34-4406199,
Email: comelpc@gmail.com OR comelpvtltdco@yahoo.com

Form of Business
Private Limited Company

Year of Establishment
January 2004

Entrepreneur Name and Position
Name: Daniel Gebremeskel
Current Positions:
- Managing Director, COMEL Pvt. Ltd. Co
- Board Chairperson, Ethiopian Apiculture Board, Tigray Branch
- Board Member, Ethiopian Honey and Beeswax Producers & Exporters Association.
Previous Positions:
- President, Mekelle Chamber of Commerce and Sectoral Association
- Board Chairperson, New Millennium Institute Share Company
- Board Member, Simret Agro-Processing Industries
- Board Chairperson, Ethiopian Youth Educational Services (NGO)

Product/ Service:
- Purified Natural Honey portions of 20g, bottled from 250g to 5kgs and Bulk Packages of 20kg to 300kg.
- Purified Natural Beeswax (molded and bars);
- Foundation Sheets from Natural Beeswax
- Candles from Natural Beeswax;
- Other Honeybee Products

Geographic location:
Mekelle, Tigray, Northern Ethiopia

Product end market:
North America and Western Europe

Company Capacity
Pure Honey - Three Tones per day or Up to 600 tones per year
Pure Beeswax – 300kg per day or 60 tones per year

Job Creation
COMEL Pvt. Ltd. Co has 32 permanent employees of which 15 are women

Certificates and Licenses
- ISO 22000:2005 Food Safety Management System from ISOQAR - UK
- Eligibility Certificate to Export to EU from FDRE Ministry of Livestock and Fishery
- Certificate of Competence for Food Processing and Export from EFMHCACA
- Investment Certificates for Honey Processing and Beekeeping Developments
- Business Licenses for Honey Processing and Honey Exporting
- Organic Certificates for EU and NOP